International Journal of Medical Science and Education

pISSN- 2348 4438

eISSN-2349- 3208

Vascular complications and their correlation with microalbuminuria and common carotid artery intima media thickness in indian type 2 diabetics.

Manoj Saluja¹, S.R. Meena², Manoj Dhaka³

Received: 11/08/2013 Revised: 15/10/2013 Accepted: 25/11/2013

Abstract:

Background: Atherosclerosis being most important entity in diabetic patients controls various vascular complications. Microalbuminuria which commonly assumed to be marker of renal injury also plays an important role in assessing cardiovascular morbidities. Common carotid artery intima media thickness which is marker of atherosclerotic changes also used for assessing cardiovascular changes in diabetics. Study design: This is a case control study conducted at govt. medical college, Kota. The study population comprised of normotensive type II diabetic patients (n=50) of both sexes between 30-70 yrs of age. Normontensive non-diabetic persons served as controls (n=50). **Observations:** The mean age in study population was 53.75±9.67 yrs for males and 49.80±11.73 for females, whereas the mean age in controls was 50.15±7.20 yrs and 49.33±9.33 yrs respectively. The degree of microalbuminuria in type II diabetic population was significantly higher & increased with advancing age. Microalbuminuria was greater in those with higher BMI levels and advancing age. The common carotid artery intima media thickness (CCAIMT) increased with advancing age in both the groups although the mean values were significantly higher among diabetic population as compared to controls (0.98±0.07 vs 0.71±0.04). Summary: Degree of urinary albumin excretion in type II diabetes patients has significant relation with CCAIMT values.

Keywords: Microalbuminuria, Vascular complication, carotid intima media thickness.

INTRODUCTION:

Micro and macrovascular complications of diabetes go hand in hand. It is often believed that these are two different pathologic entities. The other view point is that these are just different phases of same pathophysiologic process. Atherosclerotic disease accounts for a major morbity and mortality among diabetics. Majority of deaths among diabetic individuals and all manifestations of cardiovascular disease are substantially more common in patients with type II diabetes than in non-diabetic

individuals. Microalbuminuria established marker of diabetic nephropathy begins insidiously and may precede the diagnosis of type II Diabetes mellitus, occurring with insulin resistance syndrome and its components including obesity & Hypertension.¹ Epidemiological & experimental suggests data that microalbuminuria is associated with an increased risk for all cause and cardiovascular mortality, cardiac abnormalities, cerebrovascular disease and

¹ Associate Professor, Medicine, Govt. Medical College, Kota

² Professor and Head, Medicine, Govt. Medical College, Kota

³ Senior Registrar, Medicine, Govt. Medical College, Kota.

^{*}Email id of corresponding author-salujamanoj2000@yahoo.com

possibly peripheral arterial disease. It has emerged as a prognostic indicator for cardiovascular disease and an indication for screening and intervention to reduce all cardiovascular risk factors among diabetics.² Common carotid artery intima media thickness (CCA-IMT) has been associated with all modifiable and non-modifiable risk factors.³ CCA-IMT represents a marker of subclinical atherosclerosis and helps for early detection of atherosclerosis in presymptomatic individuals.⁴⁻⁷ Association between microalbuminuria a predictor of cardiovascular disease and CCA-IMT a marker of cardiovascular disease has been significant reported as by researchers.^{8,9} The data from Indian diabetic population is yet to be scrutinized and assessed in quantitative terms. Endothelial dysfunction and chronic inflammation have been suggested as possible conditions to between explain the association microalbuminuria cardiovascular and disease.

This study was designed to find the association between the microalbuminuria and CCA-IMT among Indian type II diabetes population objectively and in quantitative terms.

MATERIAL & METHODS:

The study population comprised of normotensive type II diabetic patients (n=50) of both sexes between 30-70 yrs of age attending OPD. Normontensive non-diabetic persons served as controls. Exclusion criteria was as follows-

- 1. Receiving lipid modifiers or ACE inhibitors.
- 2. Hypertension, cerebrovascular disease, COPD, overt proteinuria, renal disease, malignancy.
- 3. Age less than 30 yrs or more than 70 yrs.
- 4. Smokers current or past

5. Patient non willing to participate in the study.

Detailed history including present or past illness, risk factors, personal history and history was elicited. **Physical** examination including recording of vitals detailed evaluation of system involved was done. Subjects underwent investigations including haemogram, blood sugar, uea creatinine, fasting lipid profile, ECG, B mode ultrasound with a 7-11 MHz linear array transducer was performed to study carotid intima media thickness by single skilled radiologist. Microalbuminuria was measured in morning spot urine sample. Urine albumin & creatinine were measured by Pyrogallol Red method and rate Jaffe reaction respectively. Urine albumin mg/ml to creatinine rations (ACR) was calculated for all subjects. Microalbuminuria was considered as value between 30-300 mg/gm.

RESULTS

The study population comprised of 50 type II diabetes patients (male=40, female=10) compared with 50 age & sex matched controls (male=26, female=24). The mean age in study population was 53.75±9.67 yrs for males and 49.80±11.73 for females, whereas the mean age in controls was 50.15±7.20 yrs and 49.33±9.33 yrs respectively. Type II diabetes subjects had greater mean body mass index than their non-diabetic counterparts.

Table 1: demographic profile of study population

population				
	Cases	Controls		
	(n=50)	(n=50)		
Male/Female	40/10	26/24		
Mean age	53.75±9.67	50.15±7.20		
(males)	years	years		
Mean age	49.80±11.73	49.33±9.33		
(females)	years	years		

The degree of microalbuminuria in type II diabetic population was significantly higher increased with advancing Microalbuminuria was greater in those with higher BMI levels and advancing age. Likeswise the degree of glycemia had significant influence on magnitude of microalbuminuria. The common carotid artery intima media thickness (CCAIMT) increased with advancing age in both the groups although the mean values were significantly higher among diabetic population as compared to controls $(0.98\pm0.07 \text{ vs } 0.71\pm0.04)$. The effect of age was more in diabetic population. The study population was categorized in different age groups which showed increase in mean duration of diabetes with increasing age. When duration of diabetes was studied against degree of microalbuminuria and CCAIMT there was a linear relation between these two variables and duration of diabetes. Type II diabetes subjects showed a significant rise in CCAIMT levels as their degree of microalbuminuria increased. Thus high level of CCAIMT was associated with increased duration of diabetes, increased levels of microalbuminuria and high body mass index.

Table 2: observations in study population

	Microalbum inuria	CCAI MT	Comment
Age	Increases	Increa ses	Mean values higher in cases than controls
Duration of DM2	increases	Increa ses	Linear correlatio n
BMI	increases	Increa se	
Microalb uminuria	-	Increa ses	

DISCUSSION:

The metabolic dysregulation associated with diabetes causes secondary pathological changes in multiple organ systems. Microalbuminuria is an established marker of diabetic nephropathy and has been claimed as a marker for cardiovascular events which account for about 70% of all deaths among diabetics. **CCAIMT** represents atherosclerosis and measurement at an early age could have and therapeutic serious prognostic implications both in terms of quality of life and life expectancy. Intima Media Thickness of large vessels can be considered as simplest inexpensive precise and reproducible measure of underlined atherosclerotic vascular disease. In our study microalbuminuric subjects were more obese as compared to non-albuminuric subjects in both diabetic and non-diabetic groups which corroborates with the observations by Nelai et al² study in which microalbuminuria was more among higher BMI individuals. The difference was statistically significant. Likewise influence of age and duration of diabetes on degree of microalbuminuria was similar to that of Nelaj et al² and Mykkanen L et al.8 As was the observation by Mykkanen L et al the glycemic control had significant influence on microalbuminuria (p<0.01). The same observations were confirmed by Abdurrahman Al Shaikh.¹⁰ The prevalence of microalbuminuria among diabetics was higher (84%) as compared to that of Fatma Al-Maskari et al¹¹ (61%), Abdurrahman Al-Shaikh et al (46.6%) and Matsagoura M et al⁹ (38.3%). Probably this difference is due to genetic susceptibility and the size of study population. In our study mean CCAIMT value was higher in microalbuminuric diabetics compared with non- albuminuric diabetics (1.02±0.23 vs 0.77 ± 0.20 p=0.049). These mm.

observations are similar to the previous studies of Nelaj E et al $(1.28\pm0.35 \text{ vs} 1.09\pm0.28\text{mm}, p=0.03)$, Rodondi N et al 12 (802 vs 732 µm, p<0.001), Mastsagoura M et al 9 (0.99±0.14 vs 0.89±0.15mm, p<0.05), Pujia A et al 13 (0.76±0.30 vs 0.69±0.10mm, p=0.002). Thus in Indian type II diabetic population the CCAIMT values are higher in microalbuminuric subjects compared to non-albuminuric subjects as was observed by various research groups in different ethenic populations.

CONCLUSIONS

It is concluded from our study that degree of urinary albumin excretion in type II diabetes patients has significant relation with CCAIMT values. Microalbuminuria is significantly influence by BMI, duration of diabetes and glycemic control among type II diabetes individuals. Microalbuminuria is an important marker of atherosclerosis in type II diabetes population.

Thus presence of microalbuminuria in Indian type II diabetes population not only indicates presence of diabetic nephropathy but is an important predictor of cardiovascular disease at an early stage. Clinicians can use microalbuminuria for risk stratification of vascular complications in Indian type II diabetic population. An early detection of microalbuminuria and timely intervention could have longer therapeutic implication.

REFERENCES

1. Kaushik Bhowmick, A.V.M. Kutty and H.V. Shetty. Glycemic control modified the association between microalbuminuria and c-reactive protein in type 2 diabetic mellitus. Indian Journal of Clinical Biochemistry, 2007; 22(2):53-59.

- 2. Nelaj E, Gjata M, Lilaj I, Burazeri G, Sadiku E, Collaku L, Bare O1, Tase M. Factors of Cardiovascular risk in patients with type 2 diabetes and incipient nephropathy. HIPPOKRATIA 2008, 12;4:221-224.
- 3. Bonithon-Kopp C, Scarabin PY, Taquet A, Touboul PJ, Malmejac A, Guize L. Risk factors for early carotid atherosclerosis in middle aged French women. Arteriscler Thomb, 1991; 11:966-972.
- 4. Crouse JR 3rd, Craven TE, Hagaman AP, Bond MG. Association of coronary disease with segment specific intimal-medial thickening of the extracarnial carotid artery. Circulation 1995, 92(5): 1141-7.
- 5. Kuusisto J, Mykkanen L. Hyperinsulinemic microalbuminuria: a new risk indicator for coronary heart disease. Circulation 1995; 91: 831-837.
- 6. Earle KA, Mishra M, Morocutti A, Barnes D, Stephens E, Chambers J, Viberti GC. Microalbuminuria as a marker of silent myocardial ischaemia in IDDM patients. Diabetologia, 1996; Jul; 39(7): 854-856.
- 7. Chambless LE, Heiss G, Folsom AR, Rosamond W, Szklo M, Sharrett AR, Clegg LX. Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the atherosclerosis risk in communities (ARIC) Study, 1987-1993. Am J Epidemiol, 1997; 146(6): 483-94.
- 8. Mykkanen L, Zaccaro D, O'Leary D, Howard G, Robbins D, Haffner S. Microalbuminuria and carotid artery intima-media thickness in nondiabetic and NIDDM subjects: the insulin resistance atherosclerosis study (IRAS) 1997. Stroke, 28: 1710-1716.

- 9. Maria Matsagoura, MD, Emanouil Andreadis, MD, Emanouil J. Diamantopoulous Carotid Intima-Media Thickness in patients with type 2 diabetesa. Diabetes Care 2003; 26:2966
- 10. Abdulrahman Al-Shaikh A. Prevalence of microalbuminuria in type 2 diabetes mellitus at a diabetic clinic in King Abdulaziz University Hospital. Pak J Med Sci 2007; 23: 223-226.
- 11. Fatma Al Maskari, Mohammed Eisadig and Enyioma Obineche Prevalence and determinants of

- microalbuminuria among diabetic patients in the United Arab Emirates. BMC Nephrology 2008, 9:1.
- 12. Nicolas Rodondi, Patrick Yerly, Anne Gabriel, Walter F Riesen. Microalbuminuria, but not cystain C, is associated with carotid atherosclerosis in middle-aged adults. Nephrology Dialysis Transplantation, 2007, 10: 1093.
- 13. Pujja A, Colonna A. Common carotid arterial wall thickness in NIDDM subjects. Diabetes care 1994; 17: 1330-1336.